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In this paper parent substances with molecules which can be divided into a skeleton and
six univalent substituents, and that have the properties mentioned in the title, are considered.
Two instances are the molecules of benzene and cyclopropane. The Lunn—Senior’s groups of
substitution isomerism of these compounds are described and upper bounds of the numbers
of their di-substitution and tri-substitution homogeneous derivatives are found. Lists of the
possible simple substitution reactions among di-substitution homogeneous derivatives, on one
hand, and di-substitution heterogeneous, and tri-substitution homogeneous derivatives, on the
other, are given. These substitution reactions allow for some derivatives to be identified with
their structural formulae.
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1. Introduction

A starting point of Lunn—Senior’s theory of assigning a permutation group of sym-
metry of degreel to a given molecular structure divided into skeleton dnghivalent
substituents is the following old observation: the number of its substitution isomers does
not depend on the nature of the ligants but only on the nunieo$ members of their
different typesx,, k = 1,2, ..., and on the skeleton. The only natural restriction is
that if the skeleton contains a univalent atom (or radical), then no univalent substituent
is to be identical with this atom (radical). As far as the order of ligants is irrelevant, we

obtain apartition (Aq, Ao, ..., Ay) Of the numbew, thatis,A1 > A, > --- > Ay > 0,
andii + Ay + - - - + Ay = d. Plainly, the monomial
xi\lxgz . _x;;d

is an exotic representation of substituer@sipirical formulaof the molecular structure
under question. 1® is the empirical formula of the skeleton, then
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is the empirical formula of the molecule. The additional information that makes dif-
ference between its empirical and structural formulae consists of a set ofdlists

k = 1,2,...,d, each one enumerating the unsatisfied valencies of the skeleton oc-
cupied by the identical ligants of typg. If a numeration 12, ..., d of the unsatis-

fied valencies is fixed once and for all, thdp are simply pairwise disjoint subsets of
the integer-valued intervdll, d], such thati1, d] = (J, Ax. Thus, the mathematical
model of astructural formulaof the substituents of a molecular structure with empir-
ical formulaxjx;2- - - x;¢, is atabloid A = (A1, A, ..., Ay) with d nodes of shape

A= (A1, Ao, ..., Ay):

a1, a12, ... ... a1, the component ;
azi, a2, ... Q;, the componen#,
A=
a1, Qr2, ... Gy, the componeni,
\ @
X A1 nodes
X Ao nodes
A=
X ... ... X A, nodes

Herep: T, — P, is the natural projection of the sgj of all tabloids withd nodes onto
the setP, of all partitions ofd, that maps the tabloid onto itsshapeir: Ay = |A4],
Ao =|Azl, ..., Aa = A4l

The structural formula of a molecule encodes its “connexity data”, and does not
reflect in full so called “space configuration”, because the latter is a special representa-
tion of the former. “Connexity” is a relation of order independent of considerations of
space. The “structural” relations treated by chemists are relations of just this sort, and
it is unfortunate that the word structure as used by engineers, etc., should carry with it
geometrical connotations which are too special for chemistry” [1, p. 1030].

The inverse imagd; = ¢~ 1(1) consists of all structural formulae of the sub-
stituents with empirical formula;*x}2 - - - x}?. The fibersT;, » € Py, of the mapy are
the stages where the drama of isomerism is performed.

In [1], Lunn and Senior build in the phenomenon of isomerism of a certain type in
the above mathematical model by means of action of a symmetry groupnsisting
of permutations of the unsatisfied valencies of the skeleton, and such that any isomer
of the given empirical formul@®x;*x5? - - - x;* is represented by &-orbit in 7;. The
groupG acts on the sef; of structural formulae by the rule

0 (A1, Az, ..., Ag) = (0(A)), 0(A2), ..., 0(Ay)),

and produces the spacBs; of G-orbits of the structural formulae froffy. The number
n;.c of theseG-orbits is therefore an upper bound for the numbegr, of experimen-
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tally known derivatives with compositio®x;x5? - - - x;*:
Ny;o < ny6

for any partitioni € P,. In the cases of mono-substituted derivatives< (d — 1, 1)),
di-substituted homogeneous derivatives= (d — 2, 2)), and di-substituted heteroge-
neous derivativesi(= (d — 2, 1%)), the experimenters, sometimes, are certain that the
corresponding numbers; .o attain their maximum values, .. In other words, all pos-
sible A-derivativesare prepared. In the ideal (but unattainable) situaiprR, = n;.g for
all partitionsA € P,;, and these equalities define the symmetry grGupp to so-called
combinatorial equivalence (see [1, section 4; 2, section 26; 3, theorem 5.2.5]).
Thesimple substitution reactions

m

i My x A Aj
-xl lt J 1 i J

; .xj vee _ xl...xi ...xj...’

wherer, w € P, andus = Aq, ..., i = A+ 1, ..., uj =4 — 1, ..., ug = Ay, that

is, the replacement of a ligant of type by a ligant of typex;, j < i, are encoded in

the mathematical model via two partial orderings: on the level of empirical formulae we
write A < u, and on the level of the structural picture

- X

B:(B]_,Bz,...,Bd) —> A:(Al,Az,...,Ad),

A,B e Ty, L = 9(A), u = ¢(B), of the above simple substitution reaction, whdre
is obtained fromB by moving an element € B; in the setB;, we writeA < B. More
generally, we write. < u if A can be got fromu by a finite number of the above simple
substitutions (this is the well-knowstominance ordeof partitions, see [4, section 6.1]),
and we writeA < B if A can be obtained fronB via a finite sequence of the above
simple movements of elements (see [3, section 3.2]. The latter ordering can be pulled
down on the orbit-spac&;.; = G\ T;: a < b ifthere areA € a, B e bwith A < B
(see [3, section 4.1)). & < b, a, b € T,.¢, the product which correspondsdaan, in
principle, be synthesized from the product which correspondsvia a finite sequence
of simple substitution reactions. Thus, the partially ordered,setportrays the possible
genetic relation@among the derivatives of the molecule under consideration (see [3]).

In this paper we consider parent substances with molecules that can be divided
into a skeleton and six univalent substituents, and have the properties mentioned in the
title. Two instances are the molecules of benzegidd&nd cyclopropane £Hg, which
have one mono-substitution derivative, and three and four di-substitution homogeneous
derivatives, respectively.

The paper is stratified as follows. In section 2, theorem 2.1 describes the Lunn—
Senior's groupG of substitution isomerism of our compounds and corollaries 2.7 and
2.8 give upper bounds of the numbers of their di-substitution, and tri-substitution homo-
geneous derivatives. In sections 3-5, we list the possible simple substitution reactions
among di-substitution homogeneous derivatives, on one hand, and di-substitution hetero-
geneous, and tri-substitution homogeneous derivatives, on the other. These substitution
reactions allow us to identify some derivatives with their structural formulae.
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2. TheLunn-Senior’sgroup of substitution isomerism

The theorem below gives a characterization of the Lunn—Senior’s groups of substi-
tution isomerism of the compounds from the title.

Theorem 2.1. If an organic compound consists of a skeleton with six univalent sub-
stituents and has one mono-substitution and at least three di-substitution homogeneous
derivatives, then its Lunn—Senior’s group of substitution isomerism is conjugatd in
either to the dihedral group

((123)(456), (14)(26)(35), (14)(25)(36))
of order 12, or to the cyclic group
((123456)
of order 6, or to the dihedral group
((123(456), (14)(26)(39))
of order 6.

Proof. Since there exists only one mono-substitution derivative, we hawgc = 1,
so the Lunn-Senior's group < Sg of substitution isomerism is transitive (see [5,
section 3.1.1]). The existence of at least three di-substitution derivatives means that

na4,2):;6 Z 3. (22)
Since the partitiorn(4, 2) dominates the partitiod, 12) with respect to the dominance
order, [3, corollary 5.3.2] implies
n@4,2:.6 < N@4,12);G- (2.3)

In particular,n 4 12.c > 3. Therefore [6, equation 6.1.1] and [6, equation 6.1.2] yield

84.2:6 = 84126 = £3.21:6 = &2.1%:6 = &a3.13:¢ = 0. Then the linear system [5,
formula 3.2.1] becomes

26:6 + 8@.6 + 8296 + 82126 — (1G] — 1) =0, (2.4a)
2836 + 4¢@2.12:.6 — (G, — 20) =0, (2.4b)
38236 + 3822126 — (IGIn@ 2.6 — 15 =0, (2.4c)
6g23).c + 68(22.12).¢ — (|G|n(23);G — 90) =0, (2.4d)
2822.12.6 — (IGIns,1.6 — 6) =0, (2.4e)

28(22.12).6 — (|G|n(4,12);G — 30) =0, (2.41)

4g2 12,6 — (IGIn@ 2.6 — 60) =0, (2.49)

4822 12,6 — (1GIn @2 12,6 — 180 =0, (2.4h)

(IGIn @136 — 120) =0, (2.4i)
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(|G|n(2,l4);G - 360) = 0, (24])
Sincen s 1).¢ = 1, equalities (2.4e) and (2.4f) yie|d&| > 6, and
|G|(l’l(4,12);G — 1) = 24 (25)

Then the inequality: 4 12.c > 3 implies|G| < 12. On the other hand, equalities (2.4c)
and (2.4d) imply

1G (72,6 — 2n.4.2.6)= 60.

Thus,|G| is a common divisor of 24 and 60, so we obtain two possibilities for the order
|G| of the groupG: |G| = 12 or|G| = 6.

If |G| = 12, then from (2.5) we get, 12, = 3, and the inequalities (2.2) and
(2.3) yieldn@2.c = 3. Now, equalities (2.4e) and (2.4c) impdy»2 12.c = 3 and
823.c = 4. Hence equality (2.4a) yieldge).c + g32).¢ = 4. The equalitygsz).c =0
is impossible since for every cycte e G of length 6 its square? has cyclic type3?).
Thereforege).c = g32).¢ = 2. Leto be a cycle of length 6. After eventual conjugation,
we can suppose that = (123)(456) € G. Now, consider the cyclic grouf = (o) of
order 6 and its cyclic subgrouf = ((123)(456)) that contains the two elements Gf
of cyclic type(3?). If « is one of the the elements 6f of cyclic type (2°), then

(H'=H, (2.6)

SOL = H(i) is a subgroup of; of order 6. Now, we choose¢ K (sinceg s, = 4

there are three elements of cyclic typ2®) outside K). If we suppose that is
cyclic, then we would havd. = K (the two elements of order 6 iGF are in K),

and in particular, € K: a contradiction. Hencd is isomorphic to the dihedral
group of order 6. Further, the equality (2.6) and the considerations in [6, section 7.1]
yield that we can set = (14)(26)(35), so L = ((123(456), (14)(26)(35)). Now,

in accord to [6, section 7.3.1], we get that the gratipis conjugated to the group
((123)(456), (14)(26)(39), (14)(25)(36)).

If |G| = 6, thenn 2. = 5 and equality (2.4e) implieg 2 12).c = 0. Then
equality (2.4a) becomegs);c + &(s2).6 + 8(28):6 = 5-

If G is the cyclic group of order 6, then it is generated, up to conjugation, by the
cycle (123456, andge).c = 2, 832).¢ = 2, andgz3).c = 1. Now, equality (2.4c) yields
na2.6 = 3.

If G is the dihedral group of order 6, thefnsz).; = 2, g6 = 3, and in
accordance to the equality (2.4c), we obtaiaz.c = 4. Now, we apply [6, theo-
rem5.1.1]. a

Theorem 2.1 implies immediately the following two corollaries which yield the
numbers of derivatives of the molecules under consideration.

Corollary 2.7. If an organic compound consists of a skeleton with six univalent sub-
stituents and has one mono-substitution and at least three di-substitution homogeneous
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derivatives, and if its Lunn—Senior’'s group of substitution isomerism has order 12, then
this compound has exactly three di-substitution homogeneous derivatives, at most three
di-substitution heterogeneous derivatives, and at most three tri-substitution homoge-
neous derivatives.

Corollary 2.8. If an organic compound consists of a skeleton with six univalent sub-
stituents and has one mono-substitution and at least three di-substitution homogeneous
derivatives, and if its Lunn—Senior's group of substitution isomerism has order 6,

then this compound has exactly three di-substitution homogeneous derivatives, at most
five di-substitution heterogeneous derivatives, and at most four tri-substitution homoge-
neous derivatives in case is cyclic, or has three or four di-substitution homogeneous
derivatives, at most five di-substitution heterogeneous derivatives, and at most four tri-
substitution homogeneous derivatives in casis dihedral.

3. Geneticrelations: thegroup G hasorder 12

Here we consider the possible genetic relations among the derivatives of our mole-
cule structure in the case when its Lunn—Senior’s gréugf substitution isomerism has
order 12. An example is the benzen molecul¢ig(see [1, section 6; 3, section 6.3; 7]).
Inaccord to [3, section 6.3] and theorem 3.1, we may supgose((123456, (13)(46))
and then we obtaiff(s 2).¢ = {a@.2), b 2). c@a.2)}, where:

e au ) is theG-orbit
{({1,2,4,5},{3,6}), ({2.3,5,6},{1,4}), ({1.3,4,6}.{2,5})}
of the tabloidA*? = ({1, 2, 4, 5}, {3, 6});
e b is theG-orbit
{({1,2,3,4},{5,6}), ({2.3.4,5},{1,6}), ({3.4,5,6},{1,2}),
({1,4,5,6},{2,3}), ({1.2,5,6},{3,4}), ({1.2,3,6},{4,5})}
of the tabloidB“*? = ({1, 2, 3, 4}, {5, 6});
e c(2) istheG-orbit
{({1,2,4,6},{3,5}). ({1.2,3,5},{4,6}), ({2.3,4,6},{1,5}),
({1,3,4,5},{2,6}), ({2.4,5,6}.{1,3}), ({1.3,5,6}, {2 4})}
of the tabloidC*? = ({1, 2, 4, 6}, {3, 5}).
Further, we ger(32);G = {a(32), b(32), 6(32)}, Where:
e ac) is theG-orbit
{({1,2,4},(3,5,6}), ({2,3,5}, {1, 4,6}), ({3.4,6},{1,25}),
({1,4,5},{2,3,6}), ({2.5.6},{1,3,4}), ({1.3,6},{2,4,5}),
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({2.3.6},{1,4,5}), ({1.2,5},{3,4,6}), ({1.4,6},{2,3,5}),
({3.5.6}, {1,2,4}), ({2.4,5},{1,3,6}), ({1.3,4},{2,5,6})}
of the tabloidA®® = ({1, 2, 41, {3, 5, 6});
e bz is theG-orbit
{({1,2,3}.{4,5,6}), ({2.3.4},{1,5,6}), ({3.4,5}, (1,26},
({4,5.6},{1,2,3}), ({1.5,6},{2,3,4}), ({1.2,6},{3,4,5})}
of the tabloidB® = ({1, 2, 3}, {4, 5, 6));
e ¢ is theG-orbit
{({1,3,5},{2,4,6}), ({2.4,6},{1,3,5})}
of the tabloidC® = ({1, 3, 5}, {2, 4, 6}).

Moreover, we obtail 4 12.¢ = {@.12), ba.12), ca.12)}, Where:
® ay 12 is theG-orbit
{({1.2,4,5}, {3}, {6}), ({2.3,5,6}, {4}, {1}), ({1.3,4,6}, {5}, {2}),
({1,2,4,5}, {6}, {3}), ({2.3,5,6}, {1}, {4}), ({1.3,4,6},{2}.{5})}
of the tabloidA“* = ({1, 2, 4, 5}, {3}, {6});
o by 12 is theG-orbit
{({1.2,3,4}, {5}, {6}). ({2.3,4,5}, (6}, {1}), ({3,4.5,6}, {1}, {2}),
({1,4,5,6}, {2}, {3}), ({1.2,5,6}, {3}, {4}), ({12 3,6}, {4}, {5}
({1,2,3,4}, {6}, {5}), ({2.3,4,5}, {1}, {6}). ({3.4,5,6}, {2}, {1})
({1,4,5,6}, {3}, {2}), ({1.2.5,6}, {4}, {3}). ({12 3,6}, {5}, {4})}

’
’

of the tabloidB“%* = ({1, 2, 3, 4}, {5}, {6});
e C (412 is theG-orbit
{({1,2,4,6}, (3}, {5}), ({1,2,3,5},{4),{6}), ({2.3,4,6}, {5}, {1}),
({1,3,4,5), {6}, {2}), ({2.4,5,6},(3}, {1}), ({1,3,5,6}, {4}, (2})
({1.2,4,6), {5}, {3}), ({1.2,3,5}, (6}, {4}), ({2.3,4,6}, {1}, (5})
({1,3.4,5}, {2}, {6}). ({2,4,5,6},{1},{3}), ({1.3,5,6}, {2}, {4})}

’
’

of the tabloidC4%® = ({1, 2, 4, 6}, {3}, {5)).
Since

AG) - pG42) AG) - p2) A®) - 42 B® - pt42,
B®) < (123456C*?,  C® < (123456C¢*2,
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and since
AGL) _ A42) 415 _ p42 cé1 - 42

we have the following inequalities

a@) <awz, 4@ <buz,  az) <caz, bz <bua),
ba) < caz, @ <4
and
A@4,12) < 4@4,2), a4.12) < b2, a@,12) < €@4,2)-

The diagrams below represent “Kdrner like” relations between the homogeneous
di- and tri-substitution products of our molecule structure, which can be used for com-
plete identification of these six derivatives:

au,2) b2 C(a.2)
2 v v 4N\
a3 az bz  az) bz c@

The diagrams

a2 b 2 C(a.2)
' ' I
aa1ry  bury  can

show that, as a consequence, the heterogeneous di-substitution derivatives can also be
identified completely.

Here the arrone — b means that > b and the product that correspondshtoan
be obtained from the product that corresponds e a simple substitution reaction.

4. Geneticrelations: thegroup G hasorder 6 and iscyclic

In this section we describe the genetic relations of the molecule structure un-
der question when its Lunn—Senior's grogpof substitution isomerism is cyclic of
order 6. In accord with theorem 2.1, we can suppGse= ((123456). Then
Ta2.6 = {awa2), ba2), cazl, Wwhere:

e aw ) is theG-orbit

{({1,2,4,5},{3.6}), ({2.3.5,6},{1,4}), ({1.3,4,6},{2,5})},
of the tabloidA*? = ({1, 2, 4, 5}, {3, 6});
e bu ) is theG-orbit
{({1,2,3,4},{5,6}). ({2.3.4,5},{1,6}), ({3,4,5,6},{1.2),
({1.4,5,6},{2.3}), ({1.2,5,6},{3,4}), ({1.2,3,6},{4,5})}

of the tabloidB“*? = ({1, 2, 3, 4}, {5, 6});
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e c(2) istheG-orbit
{({1,2,4,6},{3,5}), ({1.2,3,5},{4,6}), ({2.3,4,6},{1,5}),
({1,3,4,5},{2,6}), ({2.4,5,6},{1,3}) . ({1.3,5,6}, {2, 4})},
of the tabloidC*? = ({1, 2, 4, 6}, {3, 5)).
We haveT s = {a(z2), b(s2), ¢(32), d(z2)}, Where:
e acyp) is theG-orbit
{({1,2,4},(3,5,6}), ({2,3,5}, {1, 4,6}), ({3.4,6},{1,25}),
({1,4,5},{2,3,6}), ({2,5.6},{1,3,4}), ({1.3,6},{2,4,5})},
of the tabloidA® = ({1, 2, 4}, {3, 5, 6});
o b is theG-orbit
{({1,2,5},{3,4,6}), ({2.3,6},{1,4,5}), ({1.3,4},{2,5,6}),
({2,4,5},{1,3,6}). ({3,5,6},{1,2,4}), ({1 4,6},{2,3,5})}.
of the tabloidB® = ({1, 2, 5}, {3, 4, 6});
e ¢ is theG-orbit
{({1,2,3}.{4,5,6}), ({2.3.4},{1,5,6}), ({3,4,5}, (1,2 6}),
({4,5.6},{1,2,3}), ({1.5,6},{2,3,4}), ({1.2,6},{3,4,5})}
of the tabloidC® = ({1, 2, 3}, {4, 5, 6});
e d(3) is theG-orbit
{({1,3,5}.{2,4,6}), ({2.4,6},{1,3,5})}
of the tabloidD® = ({1, 3, 5}, {2, 4, 6}).
We aISO ObtairT(4712);G = {0(4,12), b(4,12), C(4’12), d(4712), 6(4712)}, Where:
® a( 12 Is theG-orbit
{({1,2,4,5},{3}, {6}), ({2.3,5,6}, {4}, {1}). ({1.3.4,6},{5).{2}),
({1,2,4,5}, {6}, {3}), ({2.3,5,6}, {1}, {4}), ({1.3,4,6},{2}.{5})}
of the tabloidA“* = ({1, 2, 4, 5}, {3}, {6});
o b 12 is theG-orbit
{({1.2,3,4}.{5}.{6}). ({2.3.4.5}.{6}.{1}). ({3.4.5.6}.{1}.{2}).
({1,4,5,6}, {2}, {3}), ({1.2,5,6}, {3}, {4}), ({1.2 3,6}, {4}.{5})}
of the tabloidB“*) = ({1, 2, 3, 4}, {5}, {6});
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® C (412 is theG-orbit
{({1.2,3,4}.{6}. {5}). ({2.3.4.5}.{1}.{6}). ({3.4.5.6}.{2}.{1}).
({1,4,5,6}, {3}, {2}), ({1.2,5,6}, {4}, {3}), ({1.2 3,6}, {5}, {4})}
of the tabloidC ) = ({1, 2, 3, 4}, {6}, {5});
e d 12 is theG-orbit
{({1.2.4.6}.{3}.{5}). ({1.2.3,5}.{4}.{6}). ({2.3.4.6}.{5}.{1}).
({1,3,4,5}, {6}, {2}), ({2.4,5,6}, {1}, {3}), ({1.3,5,6}, {2}, {4})}
of the tabloidD*Y = ({1, 2, 4, 6}, {3}, {5});
e ¢4 12 IS theG-orbit
{({1.2,4,6},{5}. (3}), ({1.2,3,5}, (6}, {4}). ({2.3.4,6},{1}.(5}),
({1,3,4,5}, {2}, {6}), ({2.4.5,6}, {3}, {1}). ({1.3,5,6},{4},{2})}
of the tabloidE41) = ({1, 2, 4, 6}, {5}, {3}).
We have
A L 42 AG) - gD, AG) - 4D, B® < 442
B® < (153(264B“*?,  B® < (123456C*“?,  C® < B“?,
C® < (123456C42, D& < (123456C42),
and

2 2 2 2

A(4’1) < A(4’2), B(4’1) < B(4’2), C(4’1) < B(4’2), D(4’1) < C(4’2),
2

E(4’l) < C(4’2),

SO
a@@) < aw,2), azy < by, a2y < C4,2) (4.1)
b(32) < a(4,2), b(32) < b(4’2), b(gz) < C(4,2), (42)
c@@) < bua), c@@) < €42, (4.3)
d(32) < C4,2), (44)
and
0(4’12) < a(4,2), b(4,12) < b(4’2), (45)
C@a,12) < b2, du12) < c@a2), €4,12) < €(4,2)- (4.6)

The inequalities (4.1)—(4.4) indicate the existence of the corresponding (simple)
substitution reactions among tl& 2)- and the(3?)-derivatives, and these substitution

reactions can be used for complete identification of4lR)-derivatives. Indeed, two,
three, and foux3?)-products can be synthesized from e 2)-derivatives which cor-
respond Q4 2), b 2), andc 4, 2), respectively.
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The following sets of structural formulae (3)-derivatives can be distinguished:

la@), bz}, {e@)lh {dz2)}-

Indeed, the products that correspond to the elements of these sets can be synthesized
from three, two, and on@l, 2)-derivatives, respectively.

The inequalities (4.5), (4.6) indicate the existence of the corresponding (simple)
substitution reactions amorig, 2)- and (4, 1°)-derivatives, and by means of these sub-
stitution reactions we can identify the following sets(4f 1°)-derivatives:

{a(4,12)}’ {5(4,12)’ C(4,12)}’ {d(4,12)’ 6’(4,12)}-

Indeed, the product that correspondsatg,2, can be synthesized only from the
identifiablea ), the products that correspond &g, ;) andc, 12, can be synthesized
only from the identifiable 4 ), and the products that correspondi{g,) ande, ;2 can
be synthesized only from the identifiakig ).

5.  Geneticrelations: thegroup G hasorder 6 and isdihedral

In this section we describe the genetic relations of the molecule structure under
guestion when its Lunn—Senior’s grodp of substitution isomerism has order 6, and
is dihedral. An instance is the molecule of cyclopropangid(see [6]). In accord
with theorem 2.1, we can suppoée = ((123)(456), (14)(26)(35)). ThenTz.¢ =
{aw.2), b2y, ca2), daz), }, where:

e au ) is theG-orbit
{({1,2,3,4},{5,6}), ({1,2,3,5},{4,6}), ({1,2 3,6}, {4,5}),
({2,4,5,6},{1,3}), ({3.4,5,6}. {1, 2}), ({1.4,5,6}, {2, 3})}

of the tabloidA“? = ({1, 2, 3, 4}, {5, 6});
e b is theG-orbit

{({1,2,4,5},{3,6}), ({2.3,5,6},{1,4}), ({1.3,4,6}.{2,5})}

of the tabloidB*? = ({1, 2, 4, 5}, {3, 6});
e c(2) istheG-orbit

{({1,2,4,6},{3,5}), ({2.3,4,5},{1,6}), ({1.3,5,6}.{2 4})}

of the tabloidC“? = ({1, 2, 4, 6}, {3, 5});
e du ) is theG-orbit

{({1,2,5,6},{3,4}), ({2.3,4,6},{1,5}), ({1.3,4,5}.{2.6})}
of the tabloidD*? = ({1, 2, 5, 6}, {3, 4}).

We haveT(gz);G = {0(32), b(32), C(32), d(32)}, Whel‘e:
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e ac) is theG-orbit
{({1,2,4},{3,5,6}), ({2.3,5},{1,4,6}), ({1,.3,6},{2,4,5}),
({2,4,5},{1,3,6}), ({3,5,6},{1,2,4}), ({1.4,6},{2,3,5})}.
of the tabloidA® = ({1, 2, 4}, {3, 5, 6});
e by is theG-orbit
{({1,2,5}.{3,4,6}), ({2.3,6}.{1,4,5}), ({1.3,4},{2,5,6}),
({1,4,5},{2,3,6}), ({2.5,6},{1,3,4}), ({3.4.6},{1.2,5})}
of the tabloidB® = ({1, 2, 5}, {3, 4, 6});
e ¢ is theG-orbit
{({1,2,6}.{3,4,5}). ({2.3.4}.{1,5,6}), ({1,3,5}, {2 4,6}),
({3.4,5},{1,2,6}), ({1.5,6},{2,3,4}), ({2.4.6},{1.3,5})}
of the tabloidC® = ({1, 2, 6}, {3, 4, 5));
e dz) is theG-orbit
{({1,2,3},{4,5,6}), ({4.5.6},{1,2 3})}
of the tabloidD® = ({1, 2, 3}, {4, 5, 6}).
Moreover, we obtairl 4 12. ¢ = {a4.12), ba.12)> Ca.12)> d(a.12), €(a.12)}, Where:
® ay 12 is theG-orbit
{({1.2,3,4}.{5}.{6}). ({1.2.3,5}.(6}.{4}). ({1.2.3.6}.{4}.{5}).
({2.4,5,6}, {1}, {3}), ({3.4,5,6}, {2}, {1}), ({1.4,5,6}.{3}.{2})}

of the tabloidA“* = ({1, 2, 3, 4}, {5}, {6});
o b 12 is theG-orbit
{({1.2,3,4},{6}. {5}). ({1.2.3,5},{4}.{6}). ({1.2, 3,6}, {5}, {4}).
({2.4,5,6}, {3}, {1}), ({3.4,5,6}, {1}, {2}), ({1.4,5,6}. {2}, {3})}
of the tabloidB“*) = ({1, 2, 3, 4}, {6}, {5});
e C(4.12 is theG-orbit
{({1.2,4,5}, {3}, {6}). ({2.3,5,6}. {1}, {4}). ({1.3.4.6}.{2}.{5}).
({1,2, 4,5}, {6}, {3}), ({2.3,5,6}, {4}, {1}). ({1.3,4,6},{5},{2})}

of the tabloidC4*® = ({1, 2, 4, 5}, {3}, {6});



V.V. lliev / Organic compounds with one mono-substitution 149

e dy 12 is theG-orbit
{({1.2.4.6}.{3}.{5}). ({2.3.4.5}.{1}.{6}). ({1.3.5.6}.{2}.{4}).
({2.3,4,5}, {6}, {1}), ({1.3,5,6}, {4}, {2}), ({1.2 4,6}, (5}.{3})}
of the tabloidD*¥ = ({1, 2, 4, 6}, {3}, {5});
e ¢4 12 is theG-orbit
{({1.2,5,6}.{3}. {4}). ({2.3.4.6}.{1}.{5}). ({1.3.4.5}.{2}.{6}).
({1,3,4,5}, {6}, {2}), ({1.2.5,6}, {4}, {3}). ({2.3,4,6},{5},{1})}
of the tabloidE41) = ({1, 2, 5, 6}, {3}, {4}).
This yields the inequalities
A®) < AGD 4@ BE2 4@ 4D B3 (123456442,

B® < 42 B® < p©*? Cc® < (132(4654“4? c® < c*?
c® - pt2), DB < AG2)
and
2 2 2 2
AGI) 442D B4 L A2 c41 - p4d, DAY - c42)

EGY - p4d

SO
a32) < a2, a32) < b(4,2), a32) < C4,2); (51)
b(gz) < a2, b(32) < b(4,2), b(32) < d(4’2), (52)
€3 < 44,2, C(3?) < €42, c@@ <da2), (5.3)
dz2) < a@,2), (5.4)
and
aga,12) < A4,2), bu12) < aw), (5.5)
C@,12) < bu2), da12) < c@a.2) e@,12) < dw2)- (5.6)

The inequalities (5.1)—(5.4) indicate the existence of the corresponding (simple)
substitution reactions among tlié, 2)- and the(3?)-derivatives, and the inequalities
(5.5), (5.6) indicate the existence of the corresponding (simple) substitution reactions
among thg4, 2)- and the(4, 1?)-derivatives.

These substitution reactions can be used for distinguishing the products that corre-
spond to different sets from the following sets of structural formulad,d?)-derivatives:

{aaz2)}, {b,2), c@a2),da2),
and from the following sets of structural formulae(8f)-derivatives:

{a@), b, c32)}, {dz2)}.
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Indeed, it is enough to note that from the product which corresponds tocan be
synthesized fou¢3?)-derivatives and from the products that correspond to the elements
of the set{b4.2), ca.2). da.2)}, can be synthesized tw@?)-derivatives. The products that
correspond to the set8s2), b32), c(32)}, and{d sz } can be synthesized from two and one
(4, 2)-derivatives, respectively.

Using the above substitution reactions, we also can identify the products corre-
sponding to the following sets of structural formulae(4f1?)-derivatives:

{0(4,12), b(4,12)}’ {0(4,12)’ d(4,12)’ 6(4,12)}-

This is because both product that correspong ¢z, andb 4 ;2) can be synthesized from
the identifiablen 4, ), and the products which corresponcdct;z), d4 12, ande 4 42, can
be obtained from the products that correspond 4@, c(4,2), andda ).
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